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Large-disturbance equations of airplane motion suitable for use
vith modern digital or an--log computers are derived from the
general equationu of rigid-body motion. Te procedure follcved
to to find solutions in each -.are for the steady-flight conditions
about vhLch the desired motions -.ep'eeat ptrturbstions. The
variablec of motion are expanded to include these steady-flight
values, and the steady-fliGht solutions are applied. in order to
eliminate the steady-flight forces and moments.

Two specific cases are carried out to final form. 'These are:

(1) Six degree-of-freedom equations, based on arbitrary
body axes, with small longitudinal velocity, sideslip,
and angle of attack perturbations.

(2) Five degree-of-freedom (constant longitudinal velocity"
equations, based vn principal axes, with small sideslip
and angle of attack perturbations, and with the effects
of gravity simplified.

The first set of equations is shown to be eepecially suitable
for use in fire-control or tracking studies, while the second
set of equations is intende.d for use in calculations involving

rkpid rolling wheuvers.

Auxiliary equations are developed for the conversion of wind-
tunnel data to body-axis stability derivatives and for the

1.erations required to obtain numerical solutions of the steady-
fjieht equations of mrction. Also, as an aid in calculating and

interpreting inztriLment readings in conjunction with laree-dis-
turbance motions, the rr~adinms of attitude-, velocity-, and
acceleration-measurinz instruments are deri';cd.
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3.0 flF0O1TICf

The equatlors of rigid body motion referred to body axes de-
veloped by the Swiss mathematician Le~onhard Euler ane the basis
for all airpleane dynamic stability theory. These equations have
been moat widely used in aeronautics ini their linearized form,.
an~d concepts such as the period and time to damp to half-amplitude
of an oscillation, the neutral point~, and the transfer function
are rigorously defined only in terms of thz linearized equations.

Linearization of Eu].er's equationE, as proposed by E. J. Routh,
requires that the notions described be restricted to sma~ll per-
turbations about an initiirJ. e'nwvitton of stcndy motion. An
licportant si=;lificiation in the acronautical field occurs when
the initial steady motion is a case of "sym~etric' Moi~t, in
which the airpla~ne's plane of syimeetry remains fixed in a ver-
tical. positio... Small distur'bances from steady syrw~etric flighit
are described by two indecnendent sets of three simultaneous
equatinns of r.3tion, insterad of by the £eiemral sin.7le set of
six vi~altaneous cquAtiors. In the g~enernl linearized esse,
hovever, the initial st#-AdZ' motion about which srr~all perturb.!-
tions occur can *Ee a severc m-netuver, such as a 'nteeply banked
turn, a repid roll, or a spira~l dive. It is cnly in casec
where the perturbatitons or disturb'inces themselves must be elloved0 ~to be large that the linearized euauwlozis of motion are inappli-
cable.

7te d-veloprient or certsin rpecial norL-linear forcm of the
equations of airrla.ne eoticn which L:;.1 y to le.r~e disLi~rbanccs
f-rcm st.cAdy flight is the subject of this report. r~pecific
applic-ations wnich i-avz_ been tz.-zzidcr:d are;

(.1) Fire-control studios, where th'e airplane a..y be re-
quaired to 1perlkirm exL"-rcrr~e :rsneuvers, while Itraing a
tpirLet

flir~ht conditions possible with modern airplanes

T1he inad-quac~y of the lireirizcd li~ctrn~nequations
of motion for efther of thc':e npplicati,:ns hr-- been ercclblished.
In the exprercicon of the eŽquationsi of' this rtport ir form suita-
ble for xnschin'i computotion, ]on_-itudi~tjl velocity and aenle
of sideciip nnd attack. disturtbanen!: are re;;trictý-j to sm'all

v.-lucs, Rs in tho linecarize'd theory.

0poue
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4.O LYERENCE AXES, SYMMOLS AN'D DMFTNXTIOS

4.1 Reference Axcz

The large-disturbence equationo of airplane motion leveloped in
this report are bszed on systems. nt axes which are fixei in the
airplr•ne, or body axes. It is often expedient to consider a
special case of body axes called principal axes, in which the
X-, Y-, and Z-axes coincide with principal axes of inertia.
For any set if body axes, however, the followlv.i definitions
are used. The- nxes are ortho~oral, having their origiiis at
the airplune's center of Lravlty. The X-axis lies within the
airplane's plane of symmetry, and Is p5sitive fcrward. The Z-
axis is also in the plane of symmetry, and is positive towards
the bottom of the airplane. The I-axis is perpendicular to
both X and Z, and is poittive tow'ards the right wing. Positive
senses of quantities referred to body axes are governed by the
positive directions of the axes themselves, following the right-
hand rule in the case of an-ular velocities and moments. Body
axes are illustrated in FiL;ure 1.

Basic aerodynarnie data used in the e,t.utions of this report
are asslmed to have been obtsined on wind-tunnel stability
a axes. The wind-tunnel ztqbility axis system is defined identi-
cally to airplane body axes except that the Z-stability axis
is peý-pendicular to the relativc wind, or approximately to the
wind-tunnel Lxis. In addition, the origin of wind-tunnel sta-
billty axes may not coLncie.c with the assumed airplane center
of gravity.

4.2 SV.bols

Length is meýasured in feet, mass in slugs, time in seconds,
and angles in radicns, unlesb zpeciried othcr-.;i.e.

b - WinC span

S- .,,,• ' .. r" itrooinnwc Chord)

CD) CL' Tc Dra•:, lift, and thrust cocfficients. CD v D/Sq

CL a L/Sq

Tý-T/Sq

__________________ ____________________________________________
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Clx, C1y, CjY Cy, C *Z Moment of Inertia ez~d product of

C1X - IX/Sqlb

Cha ly/ Sqlc

CIX' - Ly/tsq b

CI IIZ/Sqlb

!jZ- X/Sqlb

C1 , Cm, C a Rolling, p'.tcbing, and yawing moment coefficients.

Cf = L/SQ9.

*. M/Sqc

c a t4/Sqb

CX, CY, C~ Longitudinal, side, and vormul foice coefficier~ts.

CX - X/Sq

(UC C= Y/$q

CZa Z/Sq

O /p, OC A6 d b
%o. C( w C( C() ( ) ()43C

( ) Iq )r

d -Auculerometer dar-ping coritant

D, L, T a Dru±g, lift, a~nd ný-t thru.Lt

f -Accelerom-Aur pendulumi lceiagth

[GI Gyro mitrii

g Acceluration ofr grL~vity

HC - Engint: i~ur~ulic vno.:z:ntu:n (dcl'ir~d us po~itivce for right-hand

rotaijton, vit.-wed fromn t~ht: reur)
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u, v, v - Dicturbance longitudinal., lateral, and normal linear
velocities of body axes

U, V, W a Longitudinal, lateral, and normal linear veloc ,l.e&
of budy axes

u' Dimensionless small-disturbance vYlocity variable, uA, 1

V - To!.-! velocity

W Oross weight of airplane, mg

1, y, a a Distances along X, Y and " body (airplane) axes

X, Y, Z a Longitudinal, side, and normal aerodynnamic forces
along body axes

X(), Y( )Z z( ) - Body axes stability derivativea

X()u aX 1

by 1

Y( ) z 1

aT Perpendicuiar distance of thruAt axis blov cent.or of
gravity

dolt



PgX8 17935
S S~OOMIA *ACLI? COW#&VW IMW- at "GUN" 01"SlO ft WIC JlNOO CAWNCI

" F1, J, k - Unit vectors along X, Y and z body (airplane) axts

Ix, Iy, IZ, LI, - Moments of inertia about the X- Y- and z- axes,*Ad groduct of Inertia about X and Z.
I - Accel:oameter pendulum polar moment of inertia

IT - Angle of incidence of thrust axis to X- axis.

k - Accelt.-ometer spring constant

*(), n(), n( ) * Body axes stability derivatives

t( ) - OL s1
,DT qlSb

m( am 3.inqjSc

1, _s, n - Unit vectors alona A,, Y1, and Z, instrument :Lxes

L, M, N = RollinC, pitching, and ttwiag aerodynamlc moments

[L] - Orienta'io. n.trix

n - Load factor

m - as of airplane

= Ac-elerof•etcr in6m4c ukis•

velocities

P, Q, R = B~olling, pitchii.g, a.-d yawing angular velocities; of
body •Xc•i

q D~yn-oic prc'.u:e, (P/I) V-

r = RnidLus vvctor of i•atrumant locaLion to airplane'a center
of1 gr-.vity

.= Or--" Lur d/dt

t, u - ý-iit v,:ctors relating to Ltccelerometer (Sce Fi-urc 7)
S a Winc !r-' t
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0*, c'*D1imensienless small-disturbance velocity variubles.

CE a V/, 1

3, a a Sideslip angle and angle of attack.

i M s1nI V/V

Sa a tan'" W/U

F - light path angle

S = Control surface di3turbance angle

4E = Angle of nose-up Incidence of fuselage reference line relative
to X - principal axis

3- Accelerometer damping ratio

a Angle of attack of X - principal axis

- Air density, also tilt angle of sensitive direction of
0 accelerometer to the horizontal

T a Time factor, m/OMV3,

!•, e, * - Orientation angles of reference axes to arbitrary earth
axes

S9 - Disturbance values of tVie orientation angles

A Tot.! arnular velocity

(C) a t .ccelerometer undasmped natural frequency

Subscripts

a, e, r - Aileron, elevctor, rudder

a Accelerometer sensitive direction

t Normal to pendulum accelerometer support axis and rensitive

directions

u - Pendulum accelerometer oupport axis dire-tion

I Inqtrur.;ent or instruntent axes

o -iplip d fore,. or moment

1 Of Steady f2.ighth
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4.3 Definitiort

Steady night is defined as flight with zero rates of clange
or the linear and angular velocity variables, or vith
tu,,tuP,,Qu..=O. Steady sideslips and steady level turns or
steady helical turns about a vertical. space axis are possible
steady flight conditions. Steady pitching flight to more
properly referred to as "quasi-stesdy", since 0 or 1 cannot
both resta'n zero over a long period of time if Q t 0.

Straight Fight Is defined as flight with zero values of the
gular vocity variables P, Q, and R. Steady aideslips

and dives or climbs vith or without longitAlnsl acceleration
are some straight flight conditions.

Symmetric Flight Is defi.ned as flight vith a fixe4 vertical,
position in space of the plane of symmetry. In symmetric
flight, the variables P, Ft, *, and V remain zero. Wings-
laterally-level dives, climbs, pullups and pusbdownis vith
zero sideslip, are Dome 9ý,metric flight conditions.

Asynwe.rlc Flight is defined as flight in which the plane of
Symmetry does not remain in a fixed vertical position. Some
or all of the variables of motion P. P., 6, or V may be expected
to be other than zero in asy"-_=.ric flight. Examples of
asymmetric flight Include sideslips, rolls, and turns.

0i

~ ~ - L

()j
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5.1 General Equatione of Airplane Notion

The general equations of airplane motion are a set of nine
o1multasous non-linear differential equations, listed here
as Equatons (1) to (3):

Applied Rates of Change of
Aerodyiaic Orsavitatlon. Linear

Forces Forces momentum

X mg sin e-l~q
Y + mg cos 9 &in, -n (i-Vp+UR)()

z + g oCosaCos 0 -(•UQ+VP)

Applied Rates of T.h.We of Rates of Change
Aerodynaudc Angular Momeztum, of Engine Angular
)Ien-ts Engine Stopped Momentum

M - Xy + rn(P2-ý.'.)+ý(rx-TZ)P + PE0 &in-+T+ R% eos (2)L - I•+tz (-A.Nm)'(Jz.-I)(J• - o :

of Jconti ~, 11: 05? 2

Rates of Change
of Orientation Pu•rietiono or

Angles Aroilar Velocities

"? + (Q uinn s + R cos 0) tan

Q Cos 0R Sinl (3)

Equations (2) .pply to asrplanes Mvfri mirror 3yrmetry about theX-Z plane except for engine angular momaentum. C~nsequerntly,
the effects of rudder and alleon d,:flections (,r. the inertia
parameters are negle.cted. The aerodynamic forc.!,; and moments
in Equations ('.) aod (2) are uaually found to depend upon the
lix ,r and angu,... velocitlee arA their derivatives, the control
surface angles and Lheir derIvativ,:s, air density, Mach number,
and possibly othir faCtore as vell. Thooe functlonal deperldencea
are rzpreoented by Lquation (4).

I~I
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x x (u ,v Vw... PpQ ..........$at Set .. ?at top. Sr. ......... #PON# ......... )

r *y( • )
, Z( U )

L L("")()
LM ( ) •

NuE( U)

It Is usual to find that much simpler functions than impliedby quation
(4) are adequate in engineering problems. In additlon, the variable get
U, V, W is Senerally replaced by the equivalent act Vp 0 at vhere:

U - V coo aos co

V -V fin A

W -V" sin a coo is

alternately:

V . 4f2' +V2 + 2

-*sin", (v)v) (5)

. tan -' (I/U) J

Derivations of Equatiors (1) and (2), wilh the exception of the engine
momentum terms may be found in. Reference 1. The engine momentum term-,
in Equation (25 are derived in Reference 2. Derivations of Equations

S3ý and (5) are given in R~eference 3. Dimensionless forms of Equations
I and 2) are obtained by d,;iding by qjS and by qSb or qlSc

respectively: :
1  S r

S+ _coo sin (a , . wp + S) (U)

q15 1

( + 0 . ' 0 - + v• ).)•' -

ql:S-V--

cli~~~~ ~ - lzi+P),Czc=: , • nI
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steady-flight case of the eeil oqfintioBs of
notice is unfil for totabllshbg Initial oo~ltions for the
nmmerlml solution of Vam generl equations, so well as for

ealoulationa Involving steady flight ol.In the moat gexnrS1
aeession the stedy-rLIght equations of wixplaw notion so
obtained frm Equations (1) and (2) by~q l"t•t the term
Involving derivatives of the , and
eMloylng the steady-flight subscript I throuShout.

Two Special cases of the steady- flight equations of aLrplaw
motion are of particular Interest, and these cases are
discussed in the folloving sections.

5.2a 3steady Pitchin Syimetric nlight

Polling-pullout or puMdown mauvrs my be perforussi by
applying abrupt aileron deflections whIle in steady synnetric

,u.1up or puehiowns. Using the dimnsionless forms of Equations
( a (2), vith a obtained from Equation (s), the steady-flight
equations which apply are:

CX1 - Sin (1r + a_)- MQ sin a
.V1

CLL

Cl Sint

CI 1 •qLF Q1

Sqlb

The steady pitching velocity Q1 is oftencoxpre•s" in terms of'
the normal load factor nz. LoAd factor is defined as the ratio

of applied aerodynamic force in the specified direction to the
gross veight. Thus:

1;m. (8)

The negative sign in Equatinn (8) is u3ed to obtain agree-mnt
Vith the usual sign convention. Substituting Equation (8) into
the third of Equations (6) and solving for Qi,

Qlqjnzj [ z- coosOrx +o. ] (9)
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fte nm ileal solutions of Equations (6), (7) and (9) arsdiscussed .n Section 8.1. because of the arbitrary functionaldependence or Ci and CZ on angie of attacks this solution

is found by Iteration.

5.2.2 Et!ft Straight 8§iintrie Flight

3teady straight symmetric flicht may be used as a reference
for studying almost any maneuver, using the large-disturbance
equations of airplane motion. However, because of practical
limitations in the wy of informatlon storage on either digital
or anlog computers, it will be found expedient to establish
Initial or reference conditions which are as close to the desired
wnrauver as is possible. For example, although steady straight
synmetric flight way be used as a reference for studying the roll-
Ing pullout rmaeuver, initial conditions which include the steady
pitching portion of the maneuver (as in 5.2.1) eliminate the
necessity for machine cczputetion of that much of the problem.

Where steady straight symmetric flieht is chosen as the Initial
steady flight condition, the applicable equations cf motion are
Equations (6) and (7), vith Q, - 0.

5.3 Eanstor.s of the Variables to Include Initial Conditions

The steady-flight portions of the general equat ions of airplane
motion can be eliminated from the e;p,.-ticns. As previously
Indicated, this will reduce the amount, of inforration storage
needed for numerical solutions of the equations. The steady-
flight portio:i of the equations vay be elimirated it, the variables
of the motion are expanded to include initial conditions. Thib
is done in the following equations for the attitude angles, the
angular velocities and i ceelerations, and the linear velocities
and accelerations. It should be appreciated that in these
equations the disturbance quantities indicated by lover-case
symbols or by the prefix A are not necessarily small disturbances,
as they are in .Seference 4.

e e + . (10)

and

siL e a sin ec cos a+ cos El sin .(1)

COS a a coS ec sooSg- r'n al sin 6 J
* •1 + (12)

I I-
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Q a + q

R Rl+r

R ur

I (6).

~+

a"- }(17)
V V, (18)

S U CV coS cos

( j + M) coo 6 (cos cl cos A - sin oy sin ba)

V V1 A Vin t (1n)

-(V1 + 4~f) sin ba

W WI + v w V cos A sin a

* 4 .I-) COs 6 (sin cl cos w + cos Or tin 6)

• The steady-state uideRlip P, In set O as suofw.vted in Section 6.0.K~~~ ________

Fi
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"-('V + 4) sin 60o (coo *I. coo Aa-ein ot sinaba,,
. 4 COP £ (coE, C• x ! :Aa - sin al *in & a)

4ý(2)

Ma + M V*4) cos M (cor Oi coon 60 - sin C11 *i 6a)6&

-(i+ AV) $in ba (sin aL Cos &I + cos s1 in tacCa
i t cos 4R (sin 01o0o AO + Cos Oa sin ba)

Equations (18) to (2O) express linear velocities and accelerations
along airplane bcd~y axes in terms of the large-disturbance variables.
4, 6,, and b,. Aerodynamic flov breakdown always sets to
limit the practical ranges of these variables, particularly the
latter tvo. This makes it expedient to use the small-disturbance
linear velocity variables u,, f', and a' in place of M, 60, and
W respectively, even though the angular displacement and velocity
disturbance variables yD,0, p, q, and r are allowed to take
on large values. The smali-dl.sturbance linear velocity variables
are defined as:

U

Is t v 21)

Vi

V1

Follovin, '.1M. Jones on page 146 of Reference 4, zhe tot-l velocity

change 4 is expressed in terms of u' and a' as follows:

From Figure 3:

v2 . U2  V 2 + W)

Differentiating:

r Vl dV 2UO1 u + 2Vl v + 2Wlv

Since we assume that V, ' 0:

u' cos a + a' gin a, (23)

From Equatic"n 00

--------
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Since both v aMd M are emil the sine equals the angle and

M Is ngliglble coajsred vithVl. Thus, from Squations (21)

~ * ~'(24)

Prom zqwtions (16) and (•9j:

tantJI1 V 1 YV - tan-1 W1

SWl + V W,

"tU1 + u U1+.V V)W

2 2 , W2
Simplifying and substi'uting 'V for U1 + d1 ,

cos a for U1 /fJ2 , and sin c for wl/Vl ,

tau-1 V cos .0l - u sin jl
T1 + u Cos aj+v since,

v and u are both assumed somall, and negligible compared vith

Vi" Thus, from Equatiow (21):

.aa coo a, - 'W sin G (25)

Note ftinally that since PI and a' are small,

sin c' - aos ' 1.0
}(26)

sin a' -a' cos a' a 1.0

and products of u', 0', a', and their derivatives are negligible.

Equations (23) to (26) my now oe substituted into Equaticns (19)
and (20), leading to:

U a V, (u' + coos a,)

V w Vi" 1 (' ÷7oin } )

(U~V , *~~(28)e"• '•~~ "* ] ',••
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qua~tons; (21) and (28) can of course be obtained directly i.
9quatIons (19) A (21) using t.•ese relationships fro Figure j
(with V1 - 0):

o f * I . ( 2 9 )

In order to obtain nwirical solutions of the equations of
airplane motion the aerodymmle forces und moments must be
expresed in terms of the linear and angular velocity variables
of notion. In the 'general case of large disturbances, these
expressions, symboli?.ed in Equations (4), can be exceedingly
non-linear and complex. These difficultiet arise from aerodyrAmic
flov separation at large relative fbod angles and at high subsonic
Mach numberb, from the Interacting effects of large values of the
variables like sideslip and angle of attack, and from possible
aerodynamic bysteresis effects. Where aerodyrnAia non-linearitles
"cam be disregarded, Equations (30) are Illustrative of the exparsion
of the ecrodynam1c forces and moments. These equations are madt
dimensionless to conform vith Equations (IA) awi (2A), and the
smll-disturbaace linear velocity variables are employed.

CX. ( L a . ......

Y • Cl . ........ ec. (30)

etc.

2 __ _ _ _ _ _I
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6.0 SPECTAL FUMNS OF THE £.WATIONS 0? 140TION

The ger.-ral equations of airplane motion for a-bitrare- body axes are
given with ruoonablo, generality in Equations (1) to (5). Several
special forms of these equationw are developed in this section,
making use of a series of approximations vhich are designed to
simplify the equations as far &a possible, consistent vith their
intended uses.

6.1 Equations Suitable for Tracking Studieo

In studying the closed-loop dynamics of an automatic tracking
or fire-contro. loop it Is typical to calculate the notions
of the attacking airplane from the initiation of autommtic
tracking 14 0.- firing point. The Initial conditions are
cbaracterited by flight at zero or small benk angles. During
the mzaeuver, large bank angle changes may be expected, together
WitL airspeed changes that tend to increase ad the length of
the maneuver Is prolonged.

Accordingly, the initial conditions belected for this type
of study are steady straliebt s.=metric flight (aee Definitions
and Section 5.2.2), where the followirng quantities are Cero:

O 01 P1. Ql Rl #I

In the expansions used in these equations of motion the small-
distur'bnce linear velocity variables are used and the aerodynamic
forces and moments are linearize- is In Equation (30). It way be
appreciated that in particular cases, non-linear aerodynamic
force and moament ',haracteristius may be inserted into these
equations.

Without repeating the lengthy algebraic manipulatlom lv-rolved,
the development of the tracking equations of motion may be out-
lined in these steps:

1. Subs 'tute the velocity, angular position and aerodynamic
force and r.oment expansion equations (i1) to (15), (27),
(28), and (30) Into Equations (1A) and (2A).

2. Cancel the initial aerodynamic force and moment coefficients,
using Equations (6) and (7).

The final equations of motion fre shown :• ratrix form in Table I.
The column headings of Table I are the variables of motion a&
fouctions such as the products ef the variables of mtion. The
rove rerrcsent separnte, independent equations of motion. The
tabular entries are coefficients of the variables or functions of
the variables -.hich appear in the particular equation. Thus, tte
fir.t row of Table I is interpr.!ted as:

u, + - a' sin- + Q . .....* f 0
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If prinipal axes are chosen as the arbitrary body axes ofT a l i s ý M a 0 n l t - 1z

6.2 ýMtioqs Suitable for the Calculation of BUMId Rolli
Maneuvers

Modern high-speed airplames are capable of high rolling velocities
starting from either initially stmight flight or from pullups
or pusMhdovs. The inadequacy of the bLssical small-distuwrbe
equations of airplane motion to caltulute properly these motions
has bewom yell knovn.

These significant portions of rapid rolling maneuvers generally
are of short duration after the initiation of tho. roll, and
airspeed changes are consequently small and or negligible
Lnflue~ce on the motion. Furthermore, in conditions vhere non-
linear inertial couplings play an Important part in the motions
and tiw classical linearized equations of motion are least
applicable, aerodynamic and gravity effects are correspondingly
less significant and more susceptible to drastic simplification.

The Initial conditions selected for this type of study are
steady pitching or st.ratght symmetric flight (see Definitions
and Sections 5.2.1 and 5.2.2), vhere the folloving quantities
are zero: ft, P1 981 , $1 • The amll-disturbance linear velocity

vwriable. are used and the aerodynamic forces and moments are
linearized as in Rnott.inns (30). Also, constant longitudInal
velocity (u - is 0), and zero pitch an an., .s it affects the
force due to gravity (el = 0 a 0) are assumed.

The final equations of motion for this case are derived very much
as outlined in the previous bection, and these equatlons are
shovw In matrix form In T•able II. Principal axes are chosen
as the arbitrarn body sxes, In order to reduce the required
multiplications of variables. This appears to be a reasonabl4
simplification for practical computations, since there Is no
tracking control data system vith arbitrary body axis orientations
to be supplied with computed airplane motionsp as in the first
example.

0I

I I ' l .. . ... --... . . . . .. . .. . .. . .. . .. . .. . .. . . . . . .
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1.0 s•nML.TY DERIVATES ON_ BODY AXES

The body axes staility derivatives appearing in Tables 1 and IT
are related to vind-tunnel dAt~a referred to stability axes in Whes
section. It Is assumed that moment transfers to the assumed airplane
center of gravity have already been performe4 on the vind-tunel data,
If needed.

7.1 LongltUrnal Velocity Derivatives

The steps involved in derivi4,P the longitudinal velocity
derivatives on body axes fron. vind-tunnel data ar'. somewhat
tedious, &.ad they vill be fully illustrated in on.ly one case.
The Ill1.tratlve example is the body axes derivative xu,, defined
as DX 1 . 1he X force way be vritten as:

X - Cx (P/2) V2 S (31)

Differentiating

Nov, u' U/41 and //IU a cos ol from page 1146 of Reference 4."Then:

9 X 1 Cxu, 2 Cxj coo (32)O'g ' ilS

The derivative CX can have contributicns due to compressibility
ann aeroelastic e~fects in additio:-. to the effects of angle of
attack treated in Reference 4. Thus:

CX11' - CC9 F,-,'+ CXM Fu, -Xq8,
From page 146 of reference 4.

8.. a . sin ci1

and

i * -L 
(314)aug

Th. partial derivatives am/au' and bq/au' for arbitrary
body axee are not treated In Reference 4, so these are derived
in thre follovirk steps:

M I

aa

-H1 (1 +C(35)
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The differential 4 is obtained from the tal velecity equation:

V2.L + V2+W

Differentiatlag:

2 *I F 2U14U + 2Vj~dV + 2UWdW

With the Initial lateral velocity V1 equal to zero and with u'-
,u/,Vl , a' -* . , U1. - con al. , and WI' 1 * sin ,j:
QV U s t + a' sina, (36)

Substituting Equation (36) into Equation (35), and taking

partials:

i.;, N J1 coo

37)
b!4
oaf- " 1 sin a,

Again:
V - V, (I +)

VV

From Equation (36), using q - (P/2) V2, and neglecting products
of U' and C':

qu - fY2 (1 2u' cosn 1 + 2 a' sin a,) (38)

Tskiug partial derivatives:

Au . 1~2 coo a,

(39)
2, .pV;,- sin r, J

In the next part of this derivation, the longitudinal and norml
aerodynamic force coefficients C and C? are related to the
force coefficients measured on wvnd-tunnel stability axes CL,
C%, and to the calculated net thrust coeffic.tent Te'. It is
assumed tV"t the effects of runninZ Jet engines are all represented
with sufficient accuracy in the wind-tunnel tests except for the
net thrust. That io, it is assumend thuc the intake normal force
discussed in Reference 5 and any air intake drag forces are

________________________________ _____________'

_ _ _ _ _ _ _ _ _ -
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Included In the forces and moments measured In the v:nd-tunnei.
This vll be the case when the full-scale Jet inlet velocity
ratio Is matched in the wind tunnel, and the duct inlet details
are represented. With these conditions, CY and Cz are obtained
from Figure 5 as:

CX a CL Sin a - CD coo Q + T.' coo IT l(40)

CZ a -CL TC' sinT

Eqtations (10) can be differentiated, yielding for the X - partial

derivatives of Equation (33);

Ckc(a (CL + %1) sin a + (CL1 - CDe) cos

C 41 aC stn si al i- (co1)

Cx CLq " sin c - CDq Cosal

The v~rJation of' thrust with airCpeeAi represented by the partial
derivative- Tc'M is more conveniently expressed b.u terns of the

rate of change of net thrust with airspeed T. This is accomplished

in the follov'.ng steps. Let.

T T0 ' (p/2)V 2S

Then, as in the derivation of Equation (32),

-T 1 .T'u + 2Tc' cos a1  ()

Nov:

aT c)T 1 ZU
eo, 6u'v, sv (4)

and BU/N/ = 1/cos a1, from Reference 4. Also:

Tc=u aTc' aM Te' M1 Cos a, (44)

Substituting Equations (143) a-1d (44) into Equation (142),

Tc'y -. V -a 2TC (45)

M1

The final step requircd is the substitution of £q'jations (33),
(34), (37), (39), (14O), (41), and (45) into Equation (32,, and
simplifyiný. Wher' this procedure has b,ý(,n carried out, th.w
zesults rny be ounwarized as on the first row of' Tuble III. The
othor l!:ý.it,:dira1 vilocity derivutiv,!s on body axes are obtaind
In ltk'.- -'in,)tr.
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7.2 Agae of Attack Derivatives

The derivation of the a•nle of attack derivotlves on body axes
Is Illustrated in s sinjle ease, as for the longitudi•a• velocity
1.rivatives. The illustrative example Is x , defined as

M.X 1 . Differentiating Equation (31) v4S% respect to W, sA

notIng that cra a•d *OV/W s in Ci from age, 146 of Refer-

ence hP

*, 1 + 2Cxl sin (16)

Nlov..

-, ,,. •' + C• am + C PS (47)
* g M j , a Xq D

From page 146 of Reference 4;

S~and.
CO Co.ý

Finally, by substituting Equations (37), (39), (40), (4,.1), (45),
(47), and (48) into Equaticn. (46), the derivative xa, is obtained

as the first row of Thble IV. The re-Ainln.7 angle of attack
derivatives on body axes are obtained in like mnner.

7.3 siaesi, Derivatives

The relationships between the sidelip der 4v-tives on arbitrary
body axes and tne sideslip Aerivatives on stability axes obtained
ir the vind tunnel are derived on page 61 of Reference 4. These
eqýations are reproduced in Table V of this report, using modern
notation. Second-order deri-'Ptives like yp,, are included in

the equatiLr.s of Tables I and II, having the significance of the
rate of change with angle of attack of the sidivs)lp derivative
in queation. Formulae for obtainiing the second-order sideclip
dcrIvat.veo direct2'y from wind-tunnel data are included in Tabic
V.

A.
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"7.4 Symetric Rotary Derivatives

The derivation of the symmetric rotary derivatives on body axes
in terms of vind-tunnel or ealculated data on stability axes is
Illustrated by the derivation of x6 , defined as X 1 .

bq q10

Differentiating Equation (31) vith respect to q and noting that

e~q ("9)

The disturbr.nee pitching veLcity variable q Is iV&,9ezxene.
of angle of attack, Mach number, d-namic pressure, and the other
variables of the problem. Thus, differentiating Equation (4O)
vith respect to q,

C4• - C14 h L- CD cos r (50)

The other syrzietric rotary derivatives simmrized in Table VI
are derived in like manner.

7.5 Asymmetric Rotary Derivatives

The relationships betveen the rolling and ya., -S or &symmetric
rotary derivatives on arbitrary body axes ar. these same
derivatives referred to stability axes are . erived cn pages 71
and 72 of Reference 4. These expressions are complicated by
the nee: to resolv-! not only the forces and moments ot,. the
body axes, but also the rolling and yaving velocities. The
results of these derivations ere sunwarized In Table VII,
including the second-order asymmetric rotary derivatives.

7.6 Control Surface Derivatives

The con.Arol surface derivatives Ln body axes in terms of vind-

tunnel data on stability axes may be derived in a similar manner
to the symmetric rotary derivaLives in section 7.4. This is the
. "nsequence of the independence of the contrct surface distur-
larce angles 8 with reupect to the other varlable4 of the motion.
The boly axes control surface derivatived are shown in Table VIII.
Second-order control surface derivatives like x 6 c., s X I

ore. not shown in Tuble 1, II, or VIII, but these can be readily
'ncluded If nveded.
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8.0 DV=LPHEWT 0F AUXILIARlY 3QtMTNU

A certain nmber of auxiliary equations must be develo;ed In or4.4r
to apply properly the large-distib ce equations of motIon presented
In Tables I and II. These equations are developed In this portion
Of the report, followed by the relations needed to calculate the
*I dioations of flight Instrurents from the computed mations.

8.1 Initial Condition Iterations

The steady-flixht equations of motion (6) and (7) are used as
initial conditions for the equations of Table I and I1. As
pointed out In Section 5.2.1 numerical solutions of these steady-
flight equations of motion normally requi'e iteration because of
the arbitrary fnmetional dependence of CX1 and CZ, on angle of

attack. A sugb sted procedure for this solution is outlined In
this sectioj. It is assumed that the air:"et., altitude, flight
path angle, goss weight, and normal load factor initial flight
conditions are specS fl'. The sugjested Iterat on procedure follovs:

(1) Select a trial value of angle of attack, Lod find the
corresponding values of CL, an CD, from wind-tunnel dtat.

(2) Solve for Q, from Equatico (9).

(3) Using the previous values for C, CL1 ,, C ., and Q,1 , solve

Sfor Tel from Equations (51) and (52). Ibise equatlons were

obtained by the substitution of Equaticns (40) into Equations
(6).

Tee 1 [CL, sin or, +*I coo a, 2r sin(4c)42siaJ()

Se I 1CL1 coo a - CD infl + ?ýf coo rB cj+ lo (52)
cos 11

(4) Plotting the trial solutions for Tcj from Equations (51) and (52)

against the trial values of a1 vtll alvays lead to a rapid
convergence.

8.2 Readingb of Attitude - Measurinp Inotruments

The general expression for computing the reidings of the attitude-
ueAcuring in•t-ur-ents in a mareuveri.g airplane may be concisely
stated in the notation of Reference (3) as:

La] -IlL](53)
Col . y.

. 'i T .• ; i ... ...... . .. ..... .. ... :.. . ... .... .. . -- . ....
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Where (@3 is a at~riz representing the successive mou-irter-.
acting rotati,%as perftr"e by the case of the masurieg
nastrnwi~t to ur~ilv at the airpiames orientation wM (L) is

%be orientation matix of Reference 3. If the attItude.. sawing
Instruimbts aim conventiozal. vertical and directional free gyros,,
Rquation (53) reduces to Equations (1i.) and (i(6) of Reference 3.

8.3 Red~ fVletv- esrn ntuet

In the most Lmenral case,, veloity-masuring Instruments my
hae w eW arbitrary location wan orientation vwith relation to a
manaver1ng airplane. Of course, unilesus the velocity-w~asuring
Instruments are located at the airplane Is center of gravity and
are &11Sne4 vith the arbitrary evateu trf boly axes,, the instrument
reading, (correctid for local-flow distortton position errors
such as uvrowah or sidevasb, Instrument errors and reduced to
true speed) vil1 no'.; be given by U1, V, and W of Equations (5).,
(5A), or (1.9).

A general set of i~nstrument axes may be selected,, vt+'. corigin
at- randiw vector r from the o~irplami' s center of gravity,,
and vith srbitrw.r orientation IAngles *1j. 81jwith respect

to the body axis syst-em. These gencral 1'.strunent axes are0 Illustrated in Figure 6. The true epee on inatrument axes
my be expressed as:

+ r

vbere

r I ix + y+

Equation (54) may be expree.ed In Cartesian form using the
Orientation Matrix (L] of Reference 3, but fith 61) e, Gasd *

In place of l e, Goand . Thus:

[u1 F U - BRy + Qz1

Vi ,1- (IV•- P] + 1 - (55)

IV -$ + te

": trug. speed) ~~~~~~~~v•] le •• ,, r•~ ()
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or

U, " (U-Ry+ QZ)cose coo #1

+ (V - .. + Rx) cos. sin *1

- (-Qx PY) sinze

V1  - (U - Ry + Qz) (coo ve1 in* 1uine8 - Sin$lcos,.)

+ (V - Pz + Rx) (sLnt 1sinjstWne1 4 cos*t•-o..)

+ (W- QX + Py) sin cooe8

W1  - (U - Ry + Qz) (cOs*ucos. 1 stDe1 + sin*1 sinti)

+ (V - Pz + Rx) (sintrco's 1sin91 - Cos*TIsinT)

+ (V- Qx +Py) coos e cos ol

In the usual flight Instrument arrangement where sideslip and
Sangle of attack vanes are provided which are independent of

r:v another, only Lhe angle of attack signal Is consistent
vith the conventions of Figure 3. For this arrangement, the
instrument readings are (neglecting local flow distortions
such as upwash or sidevsh):

13 - tan'4 (vI/u)

.1f (56)
a tan" (W1/u1)II

Although Equations (55) and (56) would be curibersome for
computational purposes, considerable simplification is usully
possible through LUX neglect %,f -.n!l termp. For exaMple,
the orientation angles *1 and #, will almost invariably be
tqual to zero, one or more of tfe dlstar.nt. x, y, and z will
usually be neg.1gible, and the use of the small-distutrbance
linear velocity varilbles uW, 31, and a'vill probably Jubtify
elimi•ting --he tan- from Equations (56).

8.I Readings of Accelcration-MessurIne Instrumnent.

As i.n 'he case of velocity-mo:aeuring instrtiuents, acceleration-
neasurii.g instruments nmy have arbitrary locationo arid orienta-
tions with respect to the airplane. A vector equation for the
14near accelerations on instrument axes may be written as:

a + n - .hx r+ ILx (9kx r) (57)
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wher.p in addition to the previous definitions:

0lu I~~ -a

A comparison of Equation (57) vith the vector forms of the
equations of motion of the accelerometer and of the airplane
itself leadoto an Important principle applying to acceleration-
measuring instruments. This principle wy be stated as
fo2lJvs:

"=The reau.4 1g along any direction of a linear
a&eeleroeter mounted at the airplane's center
of gravity is propor-ional to the resultant
aerodyn€amic force (Including th-us.) in that
direction, and Is Independent of the airplane's
attitude in space."

Because of the Lapurtance of this principle, It is
derived from basic considerations In appendix A.

AlthmAgh lengthy, the geDeral expressions for linear accelerations
along Instruent axes are presented belov in Cartesian form.
These equations are derived from the orientation nutrix ILI]
used in Equation (55). Thus:

U1] - RV + W- x (R-2+Q)+y(N÷R)+z(RP+,)

1v1 rL~lI - P u + .U x (p;A..Y(P24P2 )+Z(qRII) I (58)

Q .11!0-U + PV' + x (R4+(RP_(ý+2
or

U, [ý-RV+QN-x (R2.Q?)+Y(Pfq.R),z(Utp+4) C03e100543C

"[--vP-+R x (PQ4. )y(p2-2)+Z(Q,.i)] cos 1hsin z- o

÷[wQU.-i+V.x (PR_4)-y(QR+i)__(e+P2 )] sine T

+[0-Rw4*w~x (t+2ypqAzR+41(co5*s*1 nSin*1sn-slntIcos*I)

+[ýpW~U~x(pQg)_~p2R2)%(Q~p)(sin* 1 sin.1 sine1 .cosWlcoe. 1 )

*Neglectina Instrument lag and errors.
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VI - [0-RVe.'x (R2+el)y(4).+s)(RP4)] (costleosolsiner61 ouin.1s. )

4A.-wWaU~x (pQ.A )_y(p 2 .4p2)+Z((pr$)] (uIn*rcos*z .n1M-co**s1*xu )

4iQU.pV~x (p _)*+YkV~*j).. 5(Q2p2)] 00501 0050!

As In the case of the linear velocities of Equatirns (55), the
orfentation angles *1 and vl wili almost Invariably be equal to

sero$ and one or more of the distances x, y, and s (referred to
airplane body axes) vil usually be either zero or negligibly

equations (57) and (58) give the linear &#c'"lerations on Inctrument
axes, In vector and Cartesiar fvrm, respectIvelo-. To go frcu these
equations to the readings of actual acceleration-measuring instru-
mnts requires consideration of *.hree additional factors:

These are:

1. The effects of gravity forces on the suspended or pivoted
Mass (sometimwes called the seismic element).

2. The dynamics of the instrument Itself, which is assumed t7
have spring and dewping forces acting on the suspended mss.

3. The effects of angular accelerationn -of the Inatrument
mounti.ig, when the accelerometer zSS Is •ivoted as a
pendulum.

The treatment used to derive the readings of actual acceleration-
measuring Instruments follow generally that of Reference 6. The
effects of gravity forces on the suspended or pivoted mase afe
based on the fol.loving gravity resolution along instrunment axes
(using Lquation(5)of eefer;nce 3):

.g sin e 1
(9j] - (LI] g sin coos9 (59)

g cog Cos Il
Exfanding:

9X' a g [ -oseI coso# sinO +. cose1 sIn*, sin# cos e

-sine, Coo* cose]

gy a g [-(sin#, sine, cosqI " '3in*z cos.1) sin e

S+(sin*l sinel oin lt , coo*, coenl) sine cose

+ sin41 co,,0 cost cpsoJ
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[ = [- (0oos osos*Keine + sinstxSIn) sin 9

* (siznt 1 oso1sinS - ccsgusin. 1 ) sine cose

n the application of Equations (58) t A (59)# two types of
linear accel*r-tion-masuring Instruments are dP-stplaisbed,-
the Unser-type ar oeltromtter and the pe~neta3m-type aL4ct lro-
meter with & rotary transducer. ?be sensitive 4irection of the
linea-type accelerometer Is assued to be parallel to one of
the nstrb u nt Axes Xj# Y¥, or Z, of Figure 6. no sensitive
direction of the pen&uwum-type aeeleromter ie defined by the
orientation of the support axle parallel to one of the Lutrument
Axes. For sero signml output, the pendulum arm, the support Sxis,
and the sensitive direction of the accelerometer form an orthogonal
system. By deflnIt~on, ve define the Instrunt Axes for this ase
as being jazllel to each of the orthogonal dliections formed by
the pendulu Aar, the suypart axis,, ad the sensitive direction.
The orientations of llwesr-and pendulum-type accelerometers
relative to Instrument Axes are Illustrated in Figure 7.

8.4.1 Linear-Me Accelerometer

The transfer function of a linear-type accelertmeter is given by

(in the notation of Reference 6):

K 1 (60)

vhere:

A Accelerometer output, or the disturbed motion of the
"seismic element relative to the case, parallel to either
the X1, Y1 or Z, axes (Vigur. 7). r has the dimensions

of Leagtlý.

82a Resultant linear acceleratin of the casq in the sensitive

direction. s.2a is equal to OIO 41, or W, of Equation (58),

d pendin8 upon the sensitive direction of the instrument.
b•s1 ,; parallel to the direction of T

Po * Tilt angle of the sensitive dire tion of the accelerometer
to the horizontal. P is equal to gX,/g, C11 /£, ", 4ZI/'

of Equati'n- (59), depending upon the sensitive direction of
r the instrument, and is normal to T and as.
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KJn, S DyMUIc yreprties of the linear acceleroeter.

K '

a/e- o -/ L

vhere m' is the seismic mass

k is the spring constant

d is the damping constant

Equation (60) assumes that the accelerometer Is essentiall.v
linear device, in the sense that the output T It directly pro-
por'Aonal to the i.Vut S2s at any particu %r frequency.

This assumption is not at all inconsistent with assumptizns of
non-linearity 1.r the motions of the alrplane, since It It not
unusual to find accelerometers vith large usable linear ranges.

8.4.2 Pendu lum-Dop Accelerometer

SA generalized transfer functioni for A penduluuotype acealerometer
iAy be derived using the methods of Aeference 6. Three directions
are defined as In Figure 7, vIth unit vectors:

s * Sensitive direction

t a Normal to sensitive directicn and support axis

U w Support axis

From Equation (i) of Heference 6:

,~ ~ 'r3If 1 m, fx a (

vbere:

S. os.ot+?u_

S - Os.Ot+Qu

r .if a + f t + 0 u

+ - t... .

0"L.. .,. ..,m
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TM. 0at saplpUd to the pedulU relAtive to Its case Q is:

Q - .1 - k +*u xs (62)

ibelre i

Sub•s.tuting Equation (62) Into Equation (61) and taking he
resultant at1!rza u:

i, ,X 1 (63)

*~~~ 6%5 - it- ~ ~ +"an/s fg s .

vbere:

k + gt it

IT £

2 VI . + m-'ft -

The follov=4g definitions apply to Equation (63):

T u Accelerometer - zput or disturbed rotary motion of the
pendulum am aoout its bupport a:,-is relative to the case.
T ts measured about the support axis u , which Is parallel
to one of the Instrument Axes X Y 1,) Z1 .

Vs - 1Resultant linear acceleration of the case in is sensitive
direction, along 3. Is is equal i either vlU ov s'
of Equation (58) depending upon the orientation of the

instrument.

Au - Anrular velocity of tccelerorweter case about the pendulum
cupport axim dIrection u. flu is equal to either PI', QI
Hr.

is t Cotuponont of the acceleration of gravity along the sccelrr-
ometer sensitive axis s. go is equal to either Xz, I gYI or

ez1 of Equation (50), derending on the instrument orientation.

_____________________i
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gt - Component of the acceleration of gravity along the normal
to t sensltive direction and support axis, or along t.

It Resultant linear aecelezstilo of the case along the normal
to the sensitive direction an support aIxs, or along .

zqtation (63) dewmnstrates that the response of a pedulum-type
accelerometer used to measure linear acceleration (along its
sensitive axis) Is Aependent on the linear acceleration at rilgt
angles to the sensitive direction. For example, a pendulum-type
aceelerometer vithout a spring used as a volght-dovwnards lateral
accelroseter Vill hbve a statl gain X value approxismtely equal
to l/n, vhere n to the norml load ftctor. In a 2gpullup,
the seisami mass viii travel half as far in response to & given
steady lateral acceleration au it vould in straileht flight. Also,
the natural ftequency&J. is seen to be increased in a pulimp aad

the dapIng ratio is decreaseA.

8.4.3 Pen4wlum-Te Angular Accelerometer

Ihe transfer function of a pendulum-type &cceleromt^r used -.aa angular acceleroteter la:

vhere the notation agrees vith that for the pendulum-type linear
&cceleroziter of section L.4.2 except that:

K 1/k

Ca"" .. k/T

0' - K
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APPMDIX A

21 RADINO OF A LINiEARl ACCELEROME¶' AT

The important principle that the reading* alo.g any direction of a
linear accelerometer mounted at the airplane's center of gravity
Is proportional to the resultant aerodynamic force (including thrust)
In that direction, and Is independent of the airplane's attitude In
space was stat-&d in Section 8.4 of this report. This principle is
derived in this Appendix from basic eonsiderations. Letting primed
values refer to the accelerometer's seismic mse, w!.vton's lay for
the rate of change of linear momentum for both the airplane and the
accelpromter seismic mass Is:

* + M - m +•Ax V)

P' + MIA m'(V'+A! xv-

The acetlerometer is assumed to be located at the airplane's center
of gravity so that the vector r of Eq,.%tion (57) equals zero. Since
the accelerometer's case is carried with the airplane, A' -f& and

•' • , if ye neglect tle relatively small velocities of tde0 seismic mass relative to its case. Thus:

P F'

. - (A -2 )

The vector F' represents the external forces applied to the accelero-
meter seicmc mass. Since we are telectinZ Instrwnent lag or dynamic
effects, F' aris*!s entirely from the centering spring on the seismic
mass. In the usual case this spring Is linear and the accelerometer
readti,g Is proportional to F'. The vector form of Equation (A-2) showc
further that the accelerometer reading is proportional to the total
aerodynamic force F in t'Ve direction in which the reading is made.
The absence of the gravity vector from Equation ý -2) -oves that the
Instriument reading is lisiependent of the at.rplane's attitude In space.

If the accelerometer is calibrated so that its rep.Cing T is nade
equal to unity when F'/m'g = 1.0, then Equation (A-.) shows that thti
accelerometer rt-ds dir-.tly the airplane's load fectoz, or aerodynamic
force-to-weight ratio Elong its sensitive directinn.

PUP* Neglectlntý "nsLrurirnt las',s ,nd errors.

-,, = - -- " *, *%* - f* , - -) Y r .



"YTM Cis .r.UIF WI.Lt ýTT'R

~p

y I

~~74* Ott i

y. Ty71

77

ScII a n ,i c

~~ /t v:2



IV

Fir

LaL
ly lI

- - - - -



i4- -p .41;

fte A-2
AS 179~35

p2." It I gkt 4F -1 0 i* ar c l si!c:Jc

I - 2.

Is

I, tu Iroo'

-0 Ir



EQMTIMN OF AMU=AN !40T10 M==T3~ ~ CAWMCUAICIM OF

pt aP q Rl ________ flp alp_

2? Y. 0 . 1  -1.0Yo

2T 2?

29 of I He si ITL.y
L CIX(I CI X x Q (:Y,) ICX

~!tslIT m. HeCo

14zCO C1 T *. O IT O

t I8SUO~TIOJ4S: 1) Principal. axesCB ?O
2~ Constant Longittudtml n*:'1ccit., (umO)
3Gravity terms simplifled (e 0

5~In t'al syrnetr~c fl1'Sht (,Rl P1 R1 11 ALL a 0)
6) Cr.-11 pertur1r~tione in sideslip and angle of attack (po fsl' &ha cz')



n

CAWUIATIUJI OF RAPID ROLLIG MHMMIFS*

al f R pq ___R__ COB c -1,

2 T

z IL0 6av

CIx Cix rx C

Ciziz Iz c

Wj Aa i'



qS .- °Coos- 6a e 6r

SY6, 6 .0

'2T 2'I

ly -. 66 r• 06
- ccx c4 -0

I --- e -- -

I n6~6a j .0
%r



Pap AA~
0 JL7935

WR)flUDIWAL VEW)CXTY DERIVYATIVES ON DCDY AXES

(CL, 0D and Cl am asm toincuCJt &Ui
runing-engine eftfects except for the ney,

DER IVATIVE SYMBOL SUBIL1TT AXES EQUIVALENT

All I ~ K 1#(-2D,-Xr 2qCD%) co. 2~ (-%jý CD. Fna

(,CL* C%+ H1CL+ 2q1 CL.) coosC sin Q + 21 icoc

1u J u (-2C%. I41CIM( 2 qlCLq ) C0O2 01 + (CD6 CLi' 1n

+(CWOCDj-lMjCDM-'2.q CDq) coso1 sinai TV Bin TcoB a

fu I. (2CS~, + M43CIM +2 qýClq) coo C11

Mu (1cN q *l 'T) cot; a,DU_ SC- l4C, ii

Cma sin q

nu42 -. 21 c o l
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ANGLE OF AT'ICK DEIrIVAflVES ON BODY AXEPS

(CL.9 %j, and C6 anL assii to In@1a* all
rununiig-enqInc effects, except for the
met thrust)

DER VATIVE SYMDOL 1 .' XS W ALR

xe (Cr1 .. CDa) cOs 'Y + (CrWCD1 -K14crJ-2q1 CDq) cos asin a,
+ (2C;L 1* Y 1CW+2q 1 C~) GID20a, + 2TVcoo IT *in a,

&Z' I1  'cx (Cl' F CLC D %)cos 2a O* (-CL,- %D'-M1 Cj-2q1 CL,,) coo 01 sinC1

+(-2%,.- NlcD,4 2 1cq) si~r TV 2 in IT"a

DL 1a 0C + C +2q C sia

ami 1 21q1 -

-C, Matc C ajs~ 4 (14C 0 2qCm r- 2 Tcj s )in a

~' 1S M., CMaa

q A
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SIDESLIP DEirVATW .ON BODY AXES

DERIVATWE SmDOL WPJILXTM AXES EQMWALEVT

31F• -a, Cytacos•-C•sna
CI A , *3 I C G -Cs I

q tota (Cgo - Cn ) coOO 0 - (cnoo + c1 ) $i u i

, COB al C sinac5

(Cy•• no + Cle CO f +(l - s en al

Note: The sideslip rate derivatLives like y,, r.r:- identical In form to

the corrempotding cid-ulip de.rivr.tivea.

I
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SD4E2IIC ROTAMY DERIVATXVU 01 MCIY MMS

DIRIVATMV SDUOL 8V3ILf' AME ZQUIAI=

OX I x Cr
ýq q-,*L Ga cm+ C- l+(CLs~P. +CD*A1

DZ 1 Z6-CL. coso~ al IDonalx
pq q1Se8e
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M. C3
Ob I4q -q IS oc
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DER IVATIVE SYMOL

coo s sin a1  Cos

Cy. -C1 4  Cy.C

5j qjSb

&L I -l.

b n op ci,

6 'N' 1pqS -2G.;

ay 1 y.Cy.

6I y , yý Cy; +Cy C .- CY,

a8!, 1 .Ct. - 4

1r -- ,Sb -X P

oa 1 n; cz + c%.

CA or + '

br ( V o.~ii_____ ______ -2N,~ 4 2 C
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MRIC ROTARY DEI1VATIVES ON BODY AXES

8V3f.11 AXS EQUIVALMWX

Scoswihlna or 2  in

-C.n. Cl C

vO ;aC gi C;. -Cf. C, Ci +~ *Co
2C~j*0

cilc +C1 - Cn -C L.C4

f; cnj Cn. -Cn;

;a, + ic + C +n Cfll l C l .n

*j cn
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CONTROL StFACE DE ATrIES ON BODY AXES

( is a geral control surface perturbation)

IDERIVATIVE SYMD4L SW13UILM AXES EUIVALEMI

".,x 1 6• eL .

X 56 -C% Cos +-CL6 sin a1

4y 1
q,~ S -CL C O's GIC& sn

z,6 -....L cC6 C " 6 sin a

6 q5b CI

M6,_M6

q

.aI
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AtiG'ULAR RELATIONSHIPS IN PLANE OF SYMMETTMY
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